Probabilistic

 Automata

Acknowledgements

- Laurent Miclet, Jose Oncina and Tim Oates for previous versions of these slides.
- Rafael Carrasco, Paco Casacuberta, Rémi Eyraud, Philippe Ezequel, Henning, Fernau, Thierry Murgue, Franck Thollard, Enrique Vidal, Frédéric Tantini,...
- List is necessarily incomplete. Excuses to those that have been forgotten.
http://pagesperso.lina.univ-
nantes.fr/~cdlh/slides

1 Introduction: grammatical inference

- Find an automaton which explains my data
- Given information about a language, find the good grammar / automaton

Typical case

- $S_{+}=\{a a b, b, a a a b a, b b a b a\}$
- $S-=\{a a, b a, a a\}$

Prefix Tree Acceptor

$$
S_{+}=\{a a b, b, a a a b a, b b a b a\}
$$

The PTA is the smallest $D F A$ accepting X_{+} where every state has at most one predecessor.

Some ideas that work

- Have both positive and negative examples (learn from an informant)
- Be allowed to ask questions (queries): active learning

If you want to know more...

In practice

(Computational biology, speech recognition, web services, automatic translation, image processing ...)

- A lot of positive data
- Not necessarily any negative data
- No ideal target
- Noise

The problem, revisited

- The data consists of positive strings, «generated» following an unknown distribution
- The goal is now to find (learn) this distribution
- Or the FSM that is used to generate the strings
- Learning is about giving a meaning to finding...

Success of the probabilistic

 models- n-grams
- Hidden Markov Models
- Probabilistic grammars

DPFA: Deterministic Probabilistic Fi nite Automaton

$$
\operatorname{Pr}_{A}(a b a b)=\frac{1}{2} \times \frac{1}{2} \times \frac{1}{3} \times \frac{2}{3} \times \frac{3}{4}=\frac{1}{24}
$$

PFA: Probabilistic Finite (state) Aut omat on

E-PFA: Probabilistic Finite (state) Aut onaton with \mathcal{E}-transitions

How useful are these automata?

- They can define a distribution over Σ^{*};
- They do not tell us if a string belongs to a language;
- They are good candidates for grammar induction;
- There was (is?) not that much written theory.

Basic references

- The HMM literature
- Azaria Paz 1973: Introduction to probabilistic automata
- Chapter 5 of my book
- Probabilistic Finite-State Machines, Vidal, Thollard, cdlh, Casacuberta \& Carrasco
- Grammatical Inference papers

2 Automata, definitions

Let D be a distribution over Σ^{*}.

$$
0 \leq \operatorname{Pr}_{D}(w) \leq 1
$$

$$
\sum_{w \in \Sigma^{*}} \operatorname{Pr}_{D}(w)=1
$$

A Probabilistic Finite (state) Automaton is a $\langle Q, \Sigma, I, F, P\rangle$

- Q set of states
- I : $Q \rightarrow[0 ; 1]$
- $F: Q \rightarrow[0 ; 1]$
- $P: Q \times \Sigma \times Q \rightarrow] 0 ; 1]$

What does a PFA do?

- It defines the probability of each string w as the sum (over all paths reading w) of the products of the probabilities
- $\operatorname{Pr}_{A}(w)=\sum_{\text {paths }} p(w) \prod_{a i} P\left(q, a, q^{\prime}\right)$
- Note that if ε-transitions are allowed the sum may be infinite

$\operatorname{Pr}(a b a)=0.7 * 0.4 * 0.1 * 1+0.7 * 0.4 * 0.45 * 0.2$
$=0.028+0.0252=0.0532$
- non deterministic PFA: many initial states/only one initial state;
- an e-PFA: a PFA with ε-transitions and perhaps many initial states;
- DPFA: a deterministic PFA.

Consistency

A PFA is consistent if

- $\operatorname{Pr}_{A}\left(\Sigma^{*}\right)=1$
- $\forall x \in \Sigma^{*} 0 \leq \operatorname{Pr}_{A}(x) \leq 1$

Consistency theorem

A is consistent if every state is useful (accessible and coaccessible)

$$
\forall q \in Q: F(q)+\sum_{q^{\prime} \in Q, a \in \Sigma} P(q, a, q)=1
$$

3 Equivalence between models

- Equivalence between PFA and HMM...
- But the HMM usually define distributions over each Σ^{n}

A football HMM

3.1 Equivalence between PFA with ε-transitions and PFA without ε transitions
cdlh 2003, Hanneforth\& cdlh 2009

- Many initial states can be transformed into one initial state with ε-transitions;
- ε-transitions can be removed in polynomial time:
- Strategy:
- number the states
- eliminate first ε-loops, then the transitions with highest ranking arrival state
3.2 PFA are strictly more powerful than DPFA

Folk theorem

(and) You can't even tell in advance if you are in a good case or not.
(see: Denis \& Esposito 2004)

Example

What does a DPFA over $\Sigma=\{a\}$ look like?

- And with this architecture you cannot generate the previous one.

4 Parsing issues

- Computation of the probability of a string or of a set of strings
- Properties of most probable strings

4.1 Deterministic case

- Simple: apply definitions.
- Technically, rather sum up logs: this is easier, safer and cheaper.

$\operatorname{Pr}(a b a)=0.7 * 0.9 * 0.35 * 0=0$
$\operatorname{Pr}(a b b)=0.7 * 0.9 * 0.65 * 0.3=0.12285$

$$
\begin{aligned}
& \operatorname{Pr}(a b a)=0.7 * 0.4 * 0.1 * 1+0.7 * 0.4 * 0.45 * 0.2 \\
& =0.028+0.0252=0.0532
\end{aligned}
$$

In the literature

- The computation of the probability of a string is by dynamic programming : $O\left(n^{2} m\right)$
- 2 algorithms : backward and forward
- If we want the most probable derivation to define the probability of a string, then we can use the Viterbi algorithm.

Forward algorithm

- $A[i, j]=\operatorname{Pr}\left(q_{i} \mid a_{1} . . a_{j}\right)$
(The probability of being in state q_{i} after having read $a_{1} . a_{j}$)
- $A[i, 0]=I\left(q_{i}\right)$
- $A[i, j+1]=\sum_{k \leq|Q|} A[k, J] \cdot P\left(q_{k}, a_{j+1}, q_{i}\right)$
- $\operatorname{Pr}\left(a_{1} . . a_{n}\right)=\sum_{k \leq|Q|} A[k, n] . \mathrm{F}\left(q_{k}\right)$

4.3 Most probable string

- We prove (Casacuberta \& cdlh 2000) that finding the most probable string for a given PFA is NP-hard.

The shortest string finishing in all the \bigcirc states is exponentially long.

A strange problem

Question: Given a PFA A, and a rational $\kappa 1$, is there a string w such that $\operatorname{Pr}_{A}(w) \geq r$?

Status: NP hard (Casacuberta \& cdlh 2000)
Yet there exists a nice polynomial randomized algorithm
ie in $O(1 / \varepsilon,|A|)$ where $\varepsilon=1 / r$

4.4 The weight of a language

Question: let A be a stochastic automaton and B be a "normal" one. Compute the weight of B in A.

Fred, ICGI 2000

5 Distances

- What for?
- Estimate the quality of a language model:
- Have an indicator of the convergence of learning algorithms:
- Construct kernels.

5.1 Entropy

- How many bits do we need to correct our model?
- Two distributions over Σ^{*} : Det D^{\prime}

Kullback Leibler divergence (or relative entropy) between D and D!
$\sum_{w \in \Sigma^{*}} \operatorname{Pr}_{D}(w) \times\left|\log \operatorname{Pr}_{D}(w)-\log \operatorname{Pr}_{D}(w)\right|$

5.2 Perplexity

- The idea is to allow the computation of the divergence, but relatively to a test set (T).
- An approximation (sic) is perplexity: inverse of the geometric mean of the probabilities of the elements of the test set.

$$
\begin{gathered}
\prod_{w \in T} \operatorname{Pr}_{\Delta}(w)^{-1 /|T|} \\
= \\
1
\end{gathered}
$$

$$
\sqrt[\mid \tau]{\prod_{w \in T^{P}} \operatorname{Pr}_{D}(W)}
$$

Why multiply?

- Suppose we have two predictors for a coin toss.
- Predictor 1: heads 60\%, tails 40\%
- Predictor 2: heads 100\%
- The tests are H: 6, T 4
- Arithmetic mean P1: 36\%+16\%=0,52
- P2: 0,6
- Predictor 2 is the better predictor ;-)

5.3 Distance d_{2}

$d_{2}(D, D)=\sqrt{\sum_{w \in \Sigma^{*}}\left(\operatorname{Pr}(w)-\operatorname{Pr}_{\Delta}(w)\right)^{2}}$
Can be computed in polynomial time if D and D'are given by PFA (Carrasco \& cdlh 2002)

This also means that equivalence of PFA is in P.

6 Learning

- From a multi-set of strings, discover, infer, learn the (D)PFA that could have generated this data.
- What can we say about an algorithm that would do this?

6.1 Alergia

Algorithm by Carrasco and Oncina (1994)

- polynomial
- identifies in the limit with probability 1

Inferring stochastic automata

$S+=\{\lambda(2), a(1), a b(1), a a c(4), a b c(3)\}$

$$
\operatorname{Pr}(a a c)=4 / 11=0.36
$$

Cascade merging : 2 and 3, 4 and 5 $\operatorname{Pr}(\mathrm{aac})=(9 / 11) \cdot(4 / 9) \cdot(7 / 8) \cdot(7 / 7)=0.31$

Merging 1 and $\{4,5\}$
 $\operatorname{Pr}(\mathrm{aac})=(9 / 11) \cdot(4 / 16) \cdot(7 / 8) \cdot(8 / 16)=0.08$

4/16
C
7/8

6.2 MDI

- Thollard, Dupont and cdlh 2000, also Thollard 2001
- Idea: compute the divergence between the model and the data, and accept the merge if the ratio loss of entropy/ gain in size is favorable
- Current results are better than Alergia on classical benchmarks.

State of the art

- Interesting Results (Kermorvant \& Dupont 2002) in protein classification task
- In speech, comparable results to state of the art statistical techniques
- Best idea is to mix all good ideas: MDI, heuristics, domain background knowledge...

6.3 Smoothing

- Not allowed to propose null probabilities:
- Because of perplexity
- Also because an unseen event should not have null probability (probabilities multiply...)
- You have to probabilize more than Σ^{*}
- Hard problem...

Smoothing

- Through sampling I may not be able to see all possible examples (for example all possible strings).
- Should these unseen events have probability 0 ?
- How should I adapt the other probabilities to take into account these unseen events?

6.4 Identification of probabilities

- The objective is to identify stochastic automata or grammars.
- If we were able to discover the structure, how do we identify the probabilities?
- By estimation: the edge is used 1501 times out of 3000 passages through the state:

Stern-Brocot trees: (Stern 1858, Brocot 1860)

Can be constructed from two simple adjacent fractions by the «mean» operation

$$
\frac{a}{b} m \frac{c}{d}=\frac{a+c}{b+d}
$$

Idea:

- Instead of returning $c(x) / n$, search the Stern-Brocot tree to find a good simple approximation of this value.

Iterated Logarithm:

With probability 1 , for a co-finite number of values of n we have:

$$
\begin{gathered}
\left|\frac{c(x)}{n}-\frac{a}{b}\right|<\sqrt{\frac{\lambda \log \log }{n}} n \\
\forall \lambda>1
\end{gathered}
$$

7 Open problems

- The extension to probabilistic contextfree grammars
- The consensus string problem revisited
- Computation of margins

