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1 Introduction: grammatical 
inference

Find an automaton which explains my data
Given information about a language, find 
the good grammar / automaton
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Typical case

S+ = {aab, b, aaaba, bbaba}
S- = {aa, ba, aaa}
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Prefix Tree Acceptor
S+ ={aab, b, aaaba, bbaba}

The PTA is the smallest DFA accepting X+ 
where every state has at most one predecessor.
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CA (X+ ) or PTA(X+ )

Universal
Automaton

Σ

Border Set

A 
combinatorial 
version of the 
problem
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Some ideas that work

Have both positive and negative examples 
(learn from an informant)
Be allowed to ask questions (queries): 
active learning
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If you want to know more…
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In practice

(Computational biology, speech recognition, 
web services, automatic translation, image 
processing …)
A lot of positive data
Not necessarily any negative data
No ideal target
Noise
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The problem, revisited
The data consists of positive strings,  
«generated» following an unknown 
distribution
The goal is now to find (learn) this 
distribution
Or the FSM that is used to generate 
the strings
Learning  is about giving a meaning to 
finding…
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Success of the probabilistic 
models

n-grams
Hidden Markov Models
Probabilistic grammars
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PFA: Probabilistic Finite 
(state) Automaton
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How useful are these 
automata?

They can define a distribution over  Σ*;
They do not tell us if a string belongs to a 
language;
They are good candidates for grammar 
induction;
There was (is?) not that much written 
theory.
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Basic references

The HMM literature
Azaria Paz 1973: Introduction to 
probabilistic automata
Chapter 5 of my book
Probabilistic Finite-State Machines, Vidal, 
Thollard, cdlh, Casacuberta & Carrasco
Grammatical Inference papers
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2 Automata, definitions

Let D be a distribution over Σ*. 

0≤PrD
 

(w)≤1

∑w∈Σ*
 

PrD
 

(w)=1



20

A Probabilistic Finite (state) Automaton is a 
<Q, Σ, I, F, P> 

Q set of states 
I : Q→[0;1]
F : Q→[0;1]
P : Q×Σ×Q →]0;1]
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What does a PFA do?

It defines the probability of each string w 
as the sum (over all paths reading w) of 
the products of the probabilities

PrA(w)=∑pathsp(w)∏aiP(q,a,q’)

Note that if ε-transitions are allowed the 
sum may be infinite
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Pr(aba) = 0.7*0.4*0.1*1 +0.7*0.4*0.45*0.2 
= 0.028+0.0252=0.0532
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non deterministic PFA: many initial 
states/only one initial state;
an ε-PFA: a PFA with ε-transitions and 
perhaps many initial states; 
DPFA: a deterministic PFA.
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Consistency

A PFA is consistent if
PrA(Σ*)=1
∀x∈Σ* 0≤PrA(x)≤1
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Consistency theorem

A is consistent if every state is 
useful (accessible and co-

 accessible)

∀q∈Q: F(q)+∑q’∈Q,a∈Σ
 

P(q,a,q’)= 1



26

3 Equivalence between models

Equivalence between PFA and HMM…
But the HMM usually define distributions 
over each Σn
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3.1 Equivalence between PFA with 
ε-transitions and PFA without ε- 
transitions 

cdlh
 

2003, Hanneforth& cdlh
 

2009
Many initial states can be transformed into 
one initial state with ε-transitions;
ε-transitions can be removed in polynomial 
time;           
Strategy:

number the states
eliminate first ε-loops, then the transitions 
with highest ranking arrival state
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3.2 PFA are strictly more 
powerful than DPFA

Folk theorem

(and) You can’t even tell in advance if you 
are in a good case or not.

(see: Denis & Esposito 2004)
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What does a DPFA over 
Σ

 
={a} look like?

And with this architecture you cannot generate 
the previous one.

a … a

a

a
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4 Parsing issues

Computation of the probability of a string 
or of a set of strings

Properties of most probable strings
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4.1 Deterministic case

Simple: apply definitions.
Technically, rather sum up logs: this is 
easier, safer and cheaper.
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Pr(aba) = 0.7*0.9*0.35*0 = 0
Pr(abb) = 0.7*0.9*0.65*0.3 = 0.12285
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Pr(aba) = 0.7*0.4*0.1*1 +0.7*0.4*0.45*0.2 
= 0.028+0.0252=0.0532

4.2 Non-deterministic case
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In the literature

The computation of the probability of a string is 
by dynamic programming  : O(n2m)
2 algorithms : backward and forward
If we want the most probable derivation to 
define the probability of a string, then we can 
use the Viterbi algorithm.



37

Forward algorithm

A[i,j]=Pr(qi|a1..aj)
(The probability of being in state qi

 
after 

having read a1
 

..aj
 

)
A[i,0]=I(qi)
A[i,j+1]= ∑k≤|Q|A[k,j] . P(qk,aj+1,qi)
Pr(a1..an)= ∑k≤|Q|A[k,n] . F(qk)
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4.3 Most probable string

We prove (Casacuberta & cdlh 2000) that 
finding the most probable string for a 
given  PFA is NP-hard.
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A strange problem

Question: Given a PFA A, and a rational r<1, 
is there a string w such that PrA

 

(w) ≥
 

r?

Status : NP hard (Casacuberta
 

& cdlh
 

2000)
Yet there exists a nice polynomial 

randomized algorithm
ie

 
in O(1/ε, |A|) where ε=1/r
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4.4 The weight of a  language

Question: let A be a  stochastic automaton and  
B be a “normal”

 
one. Compute the weight of B in 

A.

Fred, ICGI 2000

PrA (L(B))= Σw∈L(B) PrA (w)
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5 Distances

What for?
Estimate the quality of a language model;
Have an indicator of the convergence of 
learning algorithms;
Construct kernels.
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5.1 Entropy
How many bits do we need to correct our model?
Two distributions over Σ*: D et D’

Kullback
 

Leibler
 

divergence
 

(or relative entropy) 
between D and D’:

∑w∈Σ*

 

PrD
 

(w) ×⎪log PrD
 

(w)-log PrD’
 

(w)⎪
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5.2 Perplexity
The idea is to allow the computation of the 
divergence, but relatively to a test set (T). 
An approximation (sic) is perplexity: inverse of 
the geometric mean of the probabilities of the 
elements of the test set.
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∏w∈T
 

PrD
 

(w)-1/⎪T⎪

=
1

∏w∈T
 

PrD
 

(w)

Problem if some probability is null...

⎪T⎪
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Why multiply?

Suppose we have two predictors for a coin 
toss.
Predictor 1: heads 60%, tails 40%
Predictor 2: heads 100%
The tests are H: 6, T 4
Arithmetic mean  P1: 36%+16%=0,52
P2: 0,6
Predictor 2 is the better predictor ;-)
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5.3 Distance d2

d2
 

(D, D’)=     ∑w∈Σ* (PrD
 

(w)-PrD’
 

(w))2

Can be computed in polynomial time if D and 
D’ are given by PFA (Carrasco & cdlh

 
2002)

This also means that equivalence of PFA is in 
P.
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6 Learning

From a multi-set of strings, discover, 
infer, learn the (D)PFA that could have 
generated this data.
What can we say about an algorithm that 
would do this?
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6.1 Alergia

Algorithm by Carrasco and Oncina
 

(1994)
polynomial
identifies in the limit with probability 1



Inferring stochastic automata 

S+ = {λ (2) ,  a (1) ,  ab (1) ,  aac (4) ,  abc (3) }
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Cascade merging : 2 and 3, 4 
and 5 
Pr(aac) = (9/11).(4/9).(7/8).(7/7) = 0.31
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Merging 1 and {4,5} 
Pr(aac) = (9/11).(4/16).(7/8).(8/16) = 0.08
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6.2 MDI

Thollard, Dupont and cdlh 2000, also Thollard
2001
Idea: compute the divergence between the 
model and the data, and accept the merge if 
the ratio loss of entropy/ gain in size is 
favorable
Current results are better than Alergia on 
classical benchmarks.
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State of the art
Interesting Results (Kermorvant & Dupont 2002) 
in protein classification task
In speech, comparable results to state of the art 
statistical techniques
Best idea is to mix all good ideas: MDI, 
heuristics, domain background knowledge...
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6.3 Smoothing

Not allowed to propose null probabilities:
Because of perplexity
Also because an unseen event should not have null 
probability (probabilities multiply…)

You have to probabilize more than Σ*

Hard problem...
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Smoothing
Through sampling I may not be able to see all 
possible examples (for example all possible 
strings).
Should these unseen events have probability 0?
How should I adapt the other probabilities to 
take into account these unseen events?
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6.4 Identification of 
probabilities

The objective is to identify stochastic 
automata or grammars.
If we were able to discover the 
structure, how do we identify the 
probabilities?
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By estimation: the edge is used 1501 times 
out of 3000 passages through the state : 

3000

a
1501
3000
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Stern-Brocot trees: (Stern 1858, 
Brocot 1860)

Can be constructed from two simple 
adjacent fractions by the «mean»

 operation 
a c a+c
b d b+d=

m
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Idea:

Instead of returning c(x)/n, search the 
Stern-Brocot tree to find a good simple 
approximation of this value.
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Iterated Logarithm: 

c(x)  - a <    λ
 

log log n
n         b                 n

∀λ>1

With probability 1, for a co-finite number of 
values of n we have:
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7 Open problems

The extension to probabilistic context-
free grammars
The consensus string problem revisited
Computation of margins
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