How to setup a motif discovery analysis

A quick survey of studies that successfully applied motif discovery to find and validate new binding sites

Maximilian Haeussler Developpement du systeme nerveux des chordees CNRS Gif-sur-Yvette

Motif Discovery in cis-regulation

Input 1:

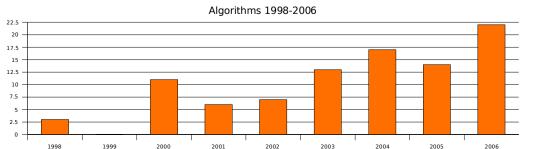
A set of regulatory regions which we assume to contain a common "word" (6-16bp) as the regions are supposed to be bound by the same transcription factor

Motif Discovery Program Output: A ranked list of overrepresented motifs, ranked by some score

Input 2: Background sequences, not bound by transcription factor

~100 Motif Discovery Algorithms

MEME MACAW CoResearch R'MES Oligo-Analys Teiresias Yebis Consensus	1994 1994 1996 1997 1998 1998 1998 1998
Dyad-Analysmuu AlignACE	2000
SP-Star Ann-Spec	2000
Verbumculus by Anderson/ YMF ELPH Winnower MobyDick SMILE Bioprospecto Co-Bind Tsukuba BB ITB Weeder Mitra Spexs Multiprofiler Projection MDScan Li2002 ScanSeq Mitra-PSSM	2000 2000 2000 2000 2000 2000 2001 2001


RISA DMotifs Kamvysselis Mermaid STARS SDDA TreeGibbs Superpositior CUBIC ProfileBranch PatternBranc	2003 2003 2003 2003 2003 2003 2003 2003
GMS-MP	2004
Mermaid	2004
Wu2004	2004
PRUNER	2004
GRAM	2004
GLAM	2004
BioOptimizer	2004
Uniform Proje	2004
DWF	2004
Combine	2004
cWinnower	2004
MoDEL	2004
QuickScore	2004
EC	2004
BiPad	2004
PhyME	2004
Emnem	2004
COOP	2005
NestedMICA	2005
EOMM	2005

MOST EBMF POCO A-GLAM Gemoda SVD BDTree	2005 2005 2005 2005 2005 2005 2005
PhyloGibbs	2005
DME	2005
MEDUSA	2005
Mamf	2006
THEME	2006
GAME	2006
COMODE	2006
REFINEMENT	2006
RevJump	2006
Gertz et al	2006
PRISM	2006
wordspy	2006
BEAM	2006
EMD	2006
SOMBRERO	2006
BoCaTfbs	2006
GibbsILR	2006
MotifCut	2006
GibbsST	2006
ALSE	2006
Gertz et al	2006
PRIORITY Reddy et al	2006
Reddy et al.	2006
MotifSeeker	2006

·Published in peerreviewed journals

•Each one is proven to better than a couple of the others

•Most comprehensive benchmark by Tompa et al in 2005 with 12 participants.

from MUMDAB

(Max's Useless Motif Discovery Algorithm Database), www.stud.uni-potsdam.de/~haussler/master/

Many open questions:

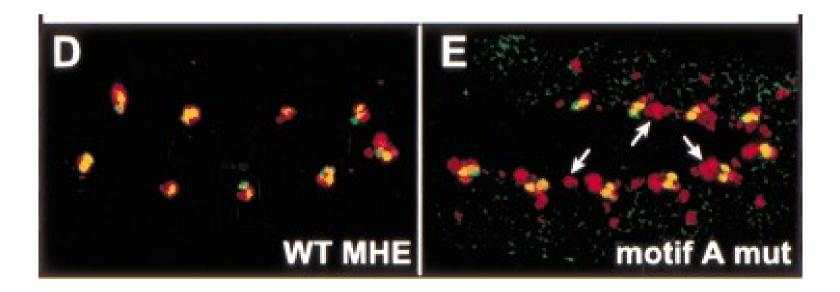
- Motif search method: Brute force?
 Statistical sampling? Dynamic
 Programming? Self-organizing Maps? ...
- Background model: HMM versus nucleotide distribution? Whole genome as background?
- Comparative Genomics: Which genomes and how align them (local/global) ?

Selection of studies:

- Gene regulation in metazoans (animals and plants)
- Apply a motif discovery algorithm to discover a new binding site specific to a set of genes
- One prediction has to be tested by wetlab assays (Mutation + Reporter-gene, gel shifts, etc) and shown to play some role

Approach of most studies

- Get sequences:
 - Either a set of known enhancers
 - or upstream sequences of genes assumed to be co-regulated
- Mine them for common motifs
- Rank these motifs
- Search genome for best matches to these motifs
- Test these enhancers experimentally and/or test the motifs by mutating them


Less papers to read!

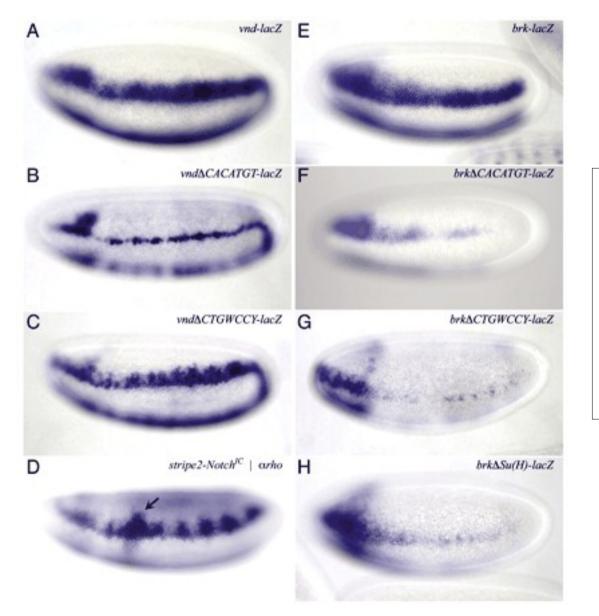
- Found around 10 studies
- Four selected for this talk: Drosophila, C. elegans, Ciona, Mouse
- Focus: Setup of the motif discovery analysis
 - Selection of genes
 - Selection of sequences
 - Searching for and scoring of candidate motifs

Drosophila 1: eve

- The five transcription factors that regulate eve are known
- Genes/Sequences: Genome-wide search identifies 34 sequences of <500bp where these 5 matrices match + simulation to see if this is significant
- Motif Discovery: AlignACE, gives 755 motifs
- Ranking:
 - filter out motifs that are not conserved in *D. virilis* (=>25)
 - cluster by similarity (=>14)
 - filter out all motifs that are not similar to Transfac (=>1)

 Motif that gave a match to Transfac was mutated and cloned, changes expression

Computation-based discovery of related transcriptional regulatory modules and motifs using an experimentally validated combinatorial model. Marc Halfon et al. , Genome research Jul 2002


Drosophila 2

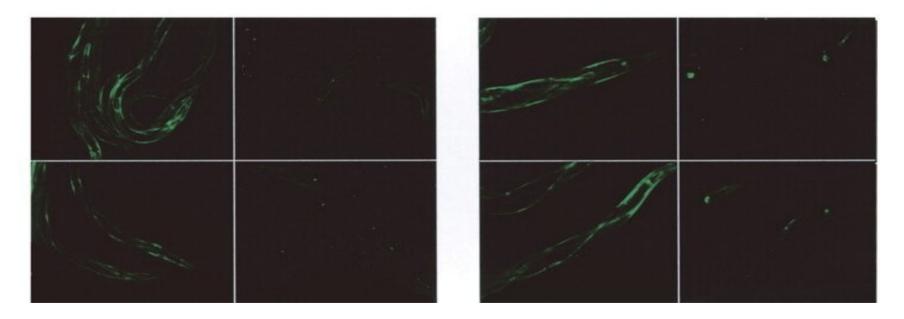
Genes and Sequences:

- Previous genome-wide search for clustered Dorsal binding sites lead to 6 active enhancers, size 300-500bp
- Background: 20 kb sequence
- total Size: 3kb!

Motif Discovery:

- Exhaustive search for n-mers with their own algorithm "Mermaid"
- Mermaid: consensus-based, allows up to 2 wildcards, parameters and scoring not specified
- Several known (Literature/Transfac) and one new motif found

Motifs tested by mutation


Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Angelike Stathopoulos et al. Cell 2002

A regulatory code for neurogenic gene expression in the Drosophila embryo. Michele Markstein et al. Development 2004

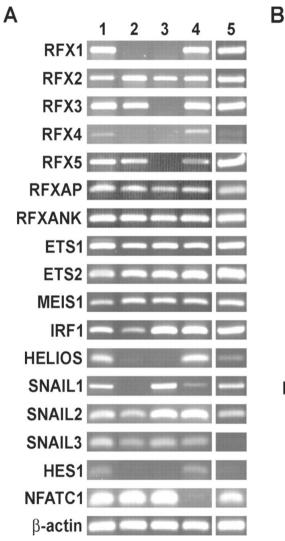
C. elegans

- **Genes:** 41 muscle-specific genes from the literature + 33 *C. briggsae* orthologs, background: 500 sets of 2000 random genes
- Sequences: 2kb upstream of selected genes
- Motif Discovery:
 - Search: Consensus and Ann-Spec, best three motifs
- Ranking:
 - Motifs: respective scores of the discovery programs
 - sequence sets: rank summed match-score over all sequences + test if ranks differ significantly (muscle versus random sequences) + Additional tests (some transfac motifs versus our motifs, conserved versus non-conserved sequences, etc)
 - Alignment with BLASTZ (local) and GLASS (global) (70% identity over 50bp) finds over-representation of hits in conserved regions but still misses more than 50% of the matches

- Ranking of all genes with the top motifs places some known muscle genes at the top
- Mutation of predicted motifs tested in two selected known muscle genes - strong reduction of expression:

Guhathakurta et al, Novel transcription regulatory elements in Caenorhabditis elegans muscle genes, Genome Res 2004

Ciona intestinalis


- Similar to the last study:
 - 20 known muscle enhancers of 300 bp
 - CisModule is configured to find 4 motifs
 - Searched conserved (*C. savigny:* BLAST+MLAGAN) parts of genome for conserved 3 motifs within 150 bp
 - kept 23 matches close to first exons
 - 7 muscle-enhancers found

Johnson et al, De novo discovery of a tissue-specific gene regulatory module in a chordate, Gen Res 2005

Mouse

- **Genes:** 41 genes from literature known to be expressed in the lung
- Sequences: -1000 to +200 bp relative to standard gene models; as a separate set: orthologous regions from human, background: 1000 random genes
- **Algorithm:** DME/removal of duplicates + Transfac-motifs
- Ranking:
 - "Classification error" (sequences that contain a motif are rather in foreground than in background)
 - Same done for mouse and human, only common motifs retained
 - Similarity to Transfac-matrices calculated

- Top motifs with match to Transfac selected, if their expression in lung has not been described yet: ETS, RFX, SNAIL
- RT-PCR on lung tissues for all paralogs to all members of ETS, RFX and SNAIL
- Factors really are expressed in lung tissues

	1	2	3	4	5
Rfx1	Ò	Ō	Ō	Ò	
Rfx2	E.		0		
Rfx3		-			
Rfx5					
Rfxap					
Rfxank					
Ets1		<u> </u>			
Ets2					
Meis1					
lrf 1					
leliosA					
Hes1					
β -actin					

 DNA motifs in human and mouse proximal promoters predict tissue-specific expression. Andrew Smith et al., PNAS Apr 2006
 Computational prediction of novel components of lung transcriptional networks. M Martinez et al. Bioinformatics Jan 2007

Conclusions

- Setup of your motif discovery analysis:
 - have as accurate sequence data as possible, rather not raw microarray results, not one single enhancer, at least 6-7 in the region of 500bp
 - Use any discovery algorithm yo like
 - Don't use the score of the discovery algorithm, devise your own score based on specificity of matches to foreground vs. background
 - use real promoter sequences as background, not markov models
 - filter with (globally) aligned sequences from one or several closely related species
 - annotate motifs with a database like Transfac

Remarks:

- Guhathakurta: "It is worth noting here that many of the known muscle genes are frequently observed to express also in neuronal tissues."
- Martinez/Smith: "Many motifs that were shown to be conserved using the known motif analysis were not represented by DME motifs (e.g. SNAIL and HES-1) and vice versa (e.g. RFX and MEIS-1). In most cases, this may be due to DME motifs being shorter in length as compared with the binding sites contained in the TRANSFAC database, consequently making proper alignments difficult. A second possibility is that the DME input parameters excluded certain cis-regulatory elements. Additionally, some factors predicted by the novel motif analysis were not predicted by the known motifs. (...) These findings suggest reliance on a single computational tool may be limiting"
- Halfon: To see if a given combination of motifs is significant, take the matches, put them to random locations and re-scan