Estimation of sequence errors and prediction capacity in transcriptomic and DNA-protein interaction assays

Eric Rivals

LIRMM - Méthodes Algorithmes pour la Bioinfo

www.lirmm.fr/~rivals

A .

Transcriptomics

Transcriptome: all RNAs present in a cell

• Transcriptomics: identify and count each RNA of a cell sequence and genomic region of origin

• Techniques:

by sequencing : EST, SAGE, MPSS, CAGE, etc.	open
by hybridisation : DNA arrays	close
"Whole" Genome Tiling Array	open

- Which diversity of transcripts in a cell?
- 70% of human or mouse genome is transcribed RNA dark matter [Zarmore, Science, 05]
- Which genomic regions are transcribed? in which conditions?

Serial Analysis of Gene Expression SAGE [Velculescu et al. 95]

- anchor site 4 pb: usually CATG with NlallI enzyme
- tags are 14 (SAGE) or 21 pb long (LongSAGE)
- occurrence: number of copies observed for a given transcript

Sequence census assay

Chromatin ImmunoPrecipitation with sequencing (ChIP-seq)

ChIP-seq is a method to identify genome-wide DNA binding sites for a protein of interest

E.g., polymerase, transcription factors, histone modification, etc.

[Kharchenko et al., Nat. Biotech., 08]

イロト イヨト イヨト イヨ

Next generation sequencing technologies

- Sequencing in paralell millions of short sequence reads
- on a single apparatus, in a few hours
- Technologies: 454[®] (pyro-sequencing), Illumina[®] / Solexa
- Examples:
 - PMAGE: PCR-colonies, sequencing by ligation, [Kim et al., 07] 2.3 million of 14 bp occurrences for 72 K tags
 - SAGE-Solexa: combines LongSAGE with Solexa 2.2 million occurrences for 440 445 tags of 21 bp
 - ChIP-seq: combines Chromatin ImmunoPrecipitation with Solexa 1.5 million of 25 bp sequences [Johnson et al. 07] 15 millions of 20 bp reads [Boyle et al. 08]

Mapping

- Find for each tag all genomic positions at which the tag match either exactly or approximately on the human genome (+/- strands)
- Fast exact mapping simultaneously for large tags sets with MPSCAN [Rivals et al., submitted]
- Results: is a tag located? once or more than once?

unmapped : not found

uniquely mapped : mapped at a single genomic location

mutiply mapped expensive, uncomplete, complicated by repeats

- Balance: a question of tag length
 - shorter tags, more mapped tags
 - longer tags, more uniquely mapped tags

MPSCAN performance

Mapping 27 bp ChIP-seq reads on human chromosome 1

Genome annotation with SAGE/LongSAGE

- SAGE: each 14 bp tag occurs many times in the human genome does not predict a unique location (theoretical average 12 locations)
- 2 LongSAGE: 21 bp high probability of a unique location [Saha et al. 02]

Genome annotation with SAGE/LongSAGE

2 LongSAGE: 21 bp high probability of a unique location [Saha et al. 02]

Evaluation in 2007

 on 1 million tags: 67% cannot be located
 but 80% of located tags have a unique location; [Keime et al. 07]

Genome annotation with SAGE/LongSAGE

2 LongSAGE: 21 bp high probability of a unique location [Saha et al. 02]

Evaluation in 2007

 on 1 million tags: 67% cannot be located
 but 80% of located tags have a unique location; [Keime et al. 07]

I How to improve prediction of transcribed genomic regions?

Questions

- Is there an optimal tag length for prediction capacity?
- How much sequence errors with new sequencing technologies?
- How do they impact on the prediction?
- How does the prediction capacity vary with length, background distribution, and errors?
- What are the source of unmapped tags?

Methods

3

10 / 30

<ロ> (日) (日) (日) (日) (日)

Mapping Background distribution

Let G be the target genome of length n, T a random Bernoulli sequence of same length. We consider tags of length t.

- Compute in function of the tag length t:
 A(t): the probability of a tag not to be located in sequence T
 B(t): the probability of a tag to be located once in sequence T
- Here $t \simeq \log(n)$, hence a tag should have a few locations on T.
- The law of the # of locations of a word w is approximated by a Compound Poisson distribution L_{cp}(λ(w), a(w)) [Robin et al., 05]

イロト 不得下 イヨト イヨト 二日

Background Distribution mapping (II)

- The law of the # of locations of a word w is approximated by a Compound Poisson distribution L_{cp}(λ(w), a(w)) [Robin et al., 05] where
 - a(w) is the probability of word w to overlap itself

$$a(w) = \sum_{p \in Pr(w)} \mathcal{P}(w[1 \cdot \cdot p]) = \sum_{p \in Pr(w)} \sigma^{-p}$$

with Pr(w): set of primary periods of w and σ : cardinal of the alphabet

λ(w) is the expected number of trains of w equals (1 − a(w)) · E(N(w))

In the Bernoulli model:

• $\mathbb{E}(\mathcal{N}(w))$ equals n/σ^t

• a(w) does not depend on w but solely on its autocorrelation c

イロト イポト イヨト イヨト 二日

Background Distribution mapping (III)

Average over all possible words of a(w) and $\lambda(w)$

$$a = \mathbb{E}(a(c)) = \frac{\sum_{c \in \Gamma(t)} a(c) \cdot \mathcal{N}(c)}{\sigma^t}$$

where: $\Gamma(t)$: set of autocorrelations of length t $\mathcal{N}(c)$: population of autocorrelation c

Computation

- Enumeration of all self-overlap vectors (autocorrelation) [Rivals & Rahmann, 03]
- Average over all classes of words with the same autocorrelation weighted with the population of each autocorrelation

Solution

$$A(t) = e^{-\lambda}$$
 and $B(t) = (1-a)\lambda e^{-\lambda}$ (2)

・ 回 ト ・ ヨ ト ・ ヨ ト ・ ヨ

(1)

Estimation of sequence errors

- A general approach for a set of sequences, either occurrences or tags
- Biologically valid tags: those with high occurrence number
- Variables
 - S(t): the probability that a sequence of length t has at least one sequence error;
 - $\mathcal{X}(t)$: the prior probability that a sequence of length t is not located on G;
 - $\mathcal{M}(t)$: the probability that an erroneous sequence of length t is located on G;
 - $\mathcal{R}(t)$: the probability that a non erroneous sequence of length t is not located on G.

$$\mathcal{X}(t) = (1 - \mathcal{S}(t)) \cdot \mathcal{R}(t) + \mathcal{S}(t) \cdot (1 - \mathcal{M}(t)). \tag{3}$$

イロト 不得下 イヨト イヨト 二日

Estimation of sequence errors (II)

For a given set of experimental sequences: occurrences or tags.

- $\mathcal{X}(t)$: map all sequences on G; % of seq not found
- $\mathcal{R}(t)$: map biologically valid sequences on G; % of seq not found select *valid* according to occurrence number
- $\mathcal{M}(t)$: randomly mutate valid sequences and map them on G; same subset as for $\mathcal{R}(t)$ % of seq found

Bootstrap: to get standard error on S(t)

Deduce the probability of an erroneous nucleotide from that of erroneous occurrences

$$p = 1 - \exp^{\left(\frac{\log(1-\mathcal{S}(t))}{t}\right)}.$$
(4)

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = ののの

Graphical method: choice of occurrence threshold

Data sets

- a) SAGE-Sanger: collection of public LongSAGE libraries [SAGE-Genie] \simeq 9 million occurrences 1 992 500 tags at 21 bp
- b) CAGE-Sanger: 5' transcriptomic tags from FANTOM3 [Kawaji et al., 06]
 5476289 occ. for 1627871 tags at 21 bp
- c) SAGE-Solexa private library from the Skuld-Tech[®] company 2 222 343 occurrences for 440 445 tags at 21 bp
- d) ChIP-seq-Solexa from NCBI GEO sample GSM325935 [Barrett et al., 08] 1 339 671 occ. for 929 165 tags at 30 bp

Results

Eric Rivals (LIRMM)

Prediction capacity and sequence errors

www.lirmm.fr/~rivals

<ロ> (日) (日) (日) (日) (日)

18 / 30

3

Results

Background distribution and prediction capacity for ChIP-seq

Results

Background distribution and prediction capacity

Comparative analysis of sequence errors in occurrences

	SAGE-Sanger		SAGE-Solexa		ChIP-seq-Solexa	
	(6 527 650 occ)		(2 222 344 occ)		(1 339 671 occ)	
t	$S(t) \pm \alpha(t)$	р	$S(t) \pm \alpha(t)$	р	$S(t) \pm \alpha(t)$	р
14	6.02 ± 1.64	0.44	4.22 ± 2.77	0.31	-	_
15	6.25 ± 0.88	0.43	5.31 ± 1.26	0.36	-	-
16	6.10 ± 0.67	0.39	4.85 ± 0.96	0.31	6.89 ± 1.59	0.44
17	7.37 ± 0.46	0.45	5.24 ± 0.71	0.32	-	
18	8.32 ± 0.38	0.48	6.65 ± 0.65	0.38	7.53 ± 0.99	0.46
19	$\textbf{9.52} \pm \textbf{0.38}$	0.53	$\textbf{8.11} \pm \textbf{0.61}$	0.44	-	
20	10.79 ± 0.33	0.57	$\textbf{9.14} \pm \textbf{0.61}$	0.48	$\textbf{8.84} \pm \textbf{0.09}$	0.48
21	12.49 ± 0.32	0.63	10.57 ± 0.60	0.53	-	
22	-	—	_	—	10.39 ± 0.09	0.50
24	-	—	_	—	11.99 ± 0.09	0.53
26	-	_	-	—	13.51 ± 0.09	0.56
28	-	_	-	—	15.22 ± 0.09	0.59
30	-	_	-	—	16.83 ± 0.09	0.61

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ < ○ </p>

Comparison SAGE vs CAGE

a) SAGE-Sanger (1992500 tags)

b) CAGE-Sanger (1627871 tags)

< A

Comparison SAGE-Solexa vs ChIP-seq

c) SAGE-Solexa (440 445 tags)

d) ChIP-seq-Solexa (929165 tags)

< 口 > < 同

Annotation & comparison with tiling array

Classification of Transcriptionally Active Regions (TARs) obtained from SAGE-Solexa library according to Ensembl annotations into

exonic, inxonic, intronic, and intergenic categories

		exonic		inxonic		intronic		intergenic	
Decult	Tatal	S	AS	S	AS	S	AS	EST	other
Result	Total	(1)	(4)	(2)	(5)	(3)	(6)	(7)	(8)
t = 16	100%	34.7%	7.8%	1.0%	0.4%	15.1%	9.2%	5.5%	26.3%
	16 328	5 659	1279	156	73	2 467	1 501	898	4 295
t = 21	100%	38.5%	8.8%	1.2%	0.3%	15.6%	6.6%	5.5%	23.5%
	56 006	21 600	4 947	691	192	8 760	3 6 9 4	3 0 5 4	13068
t = 20	100%	38.5%	8.8%	1.2%	0.3%	15.6%	6.6%	5.5%	23.5%
	56 441	21706	4 970	687	192	8 808	3743	3 100	13 235
Tiling	100%	35.6%	-	-	_	34.9%	_	10.8%	18.7%

Tiling data from [Encode project, 07]

General conclusions

Method to estimate sequence errors

and to optimise prediction capacity in function of tag length.

- Solexa sequencing is accurate and adequate for DGE
- Probability of an erroneous nucleotide increases with its position independent of the type of assay: Digital Gene Expression or ChIP-seq
- The longer (talking about tag), may not be the better

Methodological and biological evidence

- ullet With tags ≥ 19 bp, probability to map a position by chance <1%
- Above 20bp the number of uniquely mapped tags decreases.
- At 20bp with # occ. > 1 the false positive rate 0.6%. validity of filtration
- \bullet Possibility to optimise prediction capacity with exact mapping by choosing a length $\simeq 20$
- SNPs affect < 4.6% of the tags
- 9.6% of transcriptomic tags are not mapped due to artefactual or biological reasons

26 / 30

イロン 不良 とくほう イヨン 二日

Future work

- Bioinformatic platform for the analysis of transcriptomics & epigenomics assays: routine analysis
- Database of transcriptomic tags and annotations for each tag: genomic location and related annotations
- Background distribution for a markov model of the genome sequence
- Approximate mapping with a few mismatches
- Extension for longer reads and other applications: genotyping, breakpoint mapping [Chen et al., 08], genome resequencing [Dohm et al., 08], metagenomics

Authors and acknowledgments

- L.I.R.M.M., Montpellier
 N. Philippe, L. Bréhélin, E. Rivals
- Helsinki University of Technology, Finland Jorma Tarhio
- Institut de Génétique Humaine (I.G.H.), Montpellier
 A. Boureux, Thérèse Commes, Groupe Etude des Transcriptomes
 Thanks to:

• Skuld-Tech[®] Montpellier

D. Piquemal for SAGE-Solexa library and data

- S. Schbath, MIG INRA Jouy-en-Josas
- BioMIPS Languedoc Roussillon, Ligue Régionale contre le Cancer
- Cancéropôle Grand Sud Ouest

Thanks for your attention -

Eric Rivals (LIRMM)

Strategy schema

Eric Rivals (LIRMM)

www.lirmm.fr/~rivals

Tag annotation is difficult

www.lirmm.fr/~rivals

イロト イポト イヨト イヨト

3