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Introduction

Transcriptomics

Transcriptome: all RNAs present in a cell

Transcriptomics: identify and count each RNA of a cell
sequence and genomic region of origin

Techniques:

by sequencing : EST, SAGE, MPSS, CAGE, etc. open
by hybridisation : DNA arrays close

”Whole” Genome Tiling Array open

Which diversity of transcripts in a cell?

70% of human or mouse genome is transcribed
RNA dark matter [Zarmore, Science, 05]

Which genomic regions are transcribed? in which conditions?
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Introduction

Serial Analysis of Gene Expression SAGE [Velculescu et al. 95]
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anchor site 4 pb: usually CATG with NlaIII enzyme

tags are 14 (SAGE) or 21 pb long (LongSAGE)

occurrence: number of copies observed for a given transcript

Sequence census assay
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Introduction

Chromatin ImmunoPrecipitation with sequencing (ChIP-seq)

ChIP-seq is a method to identify genome-wide DNA binding sites for a
protein of interest
E.g., polymerase, transcription factors, histone modification, etc.

densities, shifting the strands relative to each other by increasing
distance. All of the examined data sets exhibit a clear peak in the
strand cross-correlation profile, corresponding to the predominant
size of the protected region (Fig. 1d and Supplementary Fig. 1
online). The magnitude of the peak reflects the fraction of tags in
the data set that appears in accordance with the expected binding tag
pattern. In an ideal case, when all of the sequenced tags participate in
such binding patterns, the correlation magnitude reaches a maximum
value. Conversely, the magnitude decreases as tag positions are
randomized (Supplementary Fig. 2 online).

Using variable-quality tag alignments
Although some tags align perfectly with the reference genome, others
align only partially, with gaps or mismatches. Poorly aligned tags may
result from experimental problems such as sample contamination,
correspond to polymorphic or unassembled regions of the genome,
or reflect sequencing errors. For the Solexa platform, the sequencing
errors are more abundant toward the 3¢ ends of the sequenced
fragments, frequently resulting in partial alignments that include
only the portions of the tags near the 5¢ ends. We estimate that this
increase in mismatch frequencies towards 3¢ termini accounts for
41–75% of all observed mismatches in the examined data sets
(Supplementary Fig. 3 online). As it is not unusual to have
450% of the total tags result in only partial
alignment, inclusion of tags that are par-
tially aligned but still informative is impor-
tant for optimizing use of any data set11,12.
We therefore chose to use the length of the
match and the number of nucleotides cov-
ered by mismatches and gaps to classify the
quality of tag alignment (Table 1 and Sup-
plementary Table 2 online).
Given a classification of tags by quality of

alignment, we propose to use the strand
cross-correlation profile to determine
whether a particular class of tags should be

included in further analysis. A set of tags informative about the
binding positions should increase cross-correlation magnitude,
whereas a randomly mapped set of tags should decrease it (Supple-
mentary Fig. 2). Using this approach for the NRSF data set (Fig. 2),
we found that alignments with matches spanning at least 18 bp and
zero mismatches improved the cross-correlation profile. However,
only full-length (25 bp) matches should be considered for tags with
two mismatches. Using this criterion to accept tags increased their
number over the set of perfectly aligned tags by 27% for the NRSF
data set, 30% for the CTCF data set and 36% for the STAT1 data set
(Supplementary Fig. 4 online). The incorporation of these tags
improved sensitivity and accuracy of the identified binding positions
(Supplementary Fig. 5 online).

Controlling for background tag distribution
The statistical significance of the tag clustering observed for a putative
protein binding position depends on the expected background pat-
tern. The simplest model assumes that the background tag density is
distributed uniformly along the genome and independently between
the strands11. In addition to the NRSF ChIP sample, Johnson et al.2

have sequenced a control input sample, providing an experimental
assessment of the background tag distribution. We found that the
background tag distribution exhibits a degree of clustering that is
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Figure 1 Protein-binding detection from ChIP-seq data. (a) Main steps of the proposed ChIP-seq processing pipeline. (b) Schematic illustration of ChIP-seq
measurements. DNA is fragmented or digested, and fragments cross-linked to the protein of interest are selected with immunoprecipitation. The 5¢ ends
(squares) of the selected fragments are sequenced, typically forming groups of positive- and negative-strand tags on the two sides of the protected region.
The dashed red line illustrates a fragment generated from a long cross-link that may account for the tag patterns observed in CTCF and STAT1 data sets.
(c) Tag distribution around a stable NRSF binding position. Vertical lines show the number of tags (right axis) whose 5¢ position maps to a given location on
positive (red) or negative (blue) strands. Positive and negative values on the y-axis are used to illustrate tags mapping to positive and negative strands,
respectively. The solid curves show tag density for each strand (left axis, based on Gaussian kernel with s ¼ 15 bp). (d) Strand cross-correlation for the
NRSF data. The y-axis shows Pearson linear correlation coefficient between genome-wide profiles of tag density of positive and negative strands, shifted
relative to each other by a distance specified on the x-axis. The peak position (red vertical line) indicates a typical distance separating positive- and
negative-strand peaks associated with the stable binding positions.

Table 1 Classification of tag alignments based on the length of the match and the number
of mismatches

16 17 18 19 20 21 22 23 24 25

0 63,388 50,613 34,707 21,230 16,775 14,453 11,068 6,556 54,455 1,234,829

1 16,625 25,991 24,715 23,431 17,540 12,705 31,416 192,975

2 295 3436 7,939 6,042 6,379 16,495

The table gives the number of NRSF data set tags whose best alignment falls within each class, as defined by the
length of alignment (columns) and the number of mismatches (rows). The tags from the NRSF data set were aligned
using BLAT. The number of mismatches includes the number of nucleotides covered by gaps.
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[Kharchenko et al., Nat. Biotech., 08]
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Introduction

Next generation sequencing technologies

Sequencing in paralell millions of short sequence reads

on a single apparatus, in a few hours

Technologies: 454®(pyro-sequencing), Illumina®/Solexa

Examples:

PMAGE: PCR-colonies, sequencing by ligation, [Kim et al., 07]
2.3 million of 14 bp occurrences for 72 K tags

SAGE-Solexa: combines LongSAGE with Solexa
2.2 million occurrences for 440 445 tags of 21 bp

ChIP-seq: combines Chromatin ImmunoPrecipitation with Solexa
1.5 million of 25 bp sequences [Johnson et al. 07]
15 millions of 20 bp reads [Boyle et al. 08]
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Introduction

Mapping

Find for each tag all genomic positions at which the tag match
either exactly or approximately on the human genome (+/− strands)

Fast exact mapping simultaneously for large tags sets with mpscan
[Rivals et al., submitted]

Results: is a tag located? once or more than once?

unmapped : not found

uniquely mapped : mapped at a single genomic location

mutiply mapped expensive, uncomplete, complicated by repeats

Balance: a question of tag length
I shorter tags, more mapped tags
I longer tags, more uniquely mapped tags
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Introduction

mpscan performance

Mapping 27 bp ChIP-seq reads on human chromosome 1
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Introduction

Genome annotation with SAGE/LongSAGE

1 SAGE: each 14 bp tag occurs many times in the human genome
does not predict a unique location (theoretical average 12 locations)

2 LongSAGE: 21 bp high probability of a unique location [Saha et al. 02]

3 Evaluation in 2007
on 1 million tags: 67% cannot be located
but 80% of located tags have a unique location; [Keime et al. 07]

4 How to improve prediction of transcribed genomic regions?
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Introduction

Questions

Is there an optimal tag length for prediction capacity?

How much sequence errors with new sequencing technologies?

How do they impact on the prediction?

How does the prediction capacity vary with length, background
distribution, and errors?

What are the source of unmapped tags?
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Methods

Methods
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Methods Background distribution of mapping

Mapping Background distribution

Let G be the target genome of length n, T a random Bernoulli sequence
of same length. We consider tags of length t.

Compute in function of the tag length t:
A(t): the probability of a tag not to be located in sequence T
B(t): the probability of a tag to be located once in sequence T

Here t ' log(n), hence a tag should have a few locations on T .

The law of the # of locations of a word w is approximated by a
Compound Poisson distribution Lcp(λ(w), a(w)) [Robin et al., 05]
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Methods Background distribution of mapping

Background Distribution mapping (II)

The law of the # of locations of a word w is approximated by a
Compound Poisson distribution Lcp(λ(w), a(w)) [Robin et al., 05]
where

I a(w) is the probability of word w to overlap itself

a(w) =
∑

p∈Pr(w)

P(w [1 · ·p]) =
∑

p∈Pr(w)

σ−p

with Pr(w): set of primary periods of w and σ: cardinal of the
alphabet

I λ(w) is the expected number of trains of w
equals (1− a(w)) · E(N (w))

In the Bernoulli model:

E(N (w)) equals n/σt

a(w) does not depend on w but solely on its autocorrelation c
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Methods Background distribution of mapping

Background Distribution mapping (III)

Average over all possible words of a(w) and λ(w)

a = E(a(c)) =

∑
c∈Γ(t)

a(c) · N (c)

σt
(1)

where: Γ(t): set of autocorrelations of length t
N (c): population of autocorrelation c

Computation

Enumeration of all self-overlap vectors (autocorrelation)
[Rivals & Rahmann, 03]

Average over all classes of words with the same autocorrelation weigthed
with the population of each autocorrelation

Solution
A(t) = e−λ and B(t) = (1− a)λe−λ (2)

Eric Rivals (LIRMM) Prediction capacity and sequence errors www.lirmm.fr/~rivals 13 / 30

www.lirmm.fr/~rivals


Methods Sequence errors

Estimation of sequence errors

A general approach for a set of sequences, either occurrences or tags

Biologically valid tags: those with high occurrence number

Variables

S(t): the probability that a sequence of length t has at least
one sequence error;

X (t): the prior probability that a sequence of length t is not
located on G ;

M(t): the probability that an erroneous sequence of length t is
located on G ;

R(t): the probability that a non erroneous sequence of length
t is not located on G .

X (t) = (1− S(t)) · R(t) + S(t) · (1−M(t)). (3)
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Methods Sequence errors

Estimation of sequence errors (II)

For a given set of experimental sequences: occurrences or tags.

X (t): map all sequences on G ; % of seq not found

R(t): map biologically valid sequences on G ; % of seq not found
select valid according to occurrence number

M(t): randomly mutate valid sequences and map them on G ;
same subset as for R(t) % of seq found

Bootstrap: to get standard error on S(t)

Deduce the probability of an erroneous nucleotide from that of erroneous
occurrences

p = 1− exp( log(1−S(t))
t

) . (4)
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Methods Sequence errors

Graphical method: choice of occurrence threshold

! "# "! $# $!

%&&'(()*&)+*',-)(

#

#."

#.$

#./

#.0

#.!

#.1

#.2

#.3

#.4

"

5
6
78
9

:;9&67)<+76=>?6*6;@>)< :6*6;@>)<+9&&

:6*6;@>)<+76=> :)((9*)9'>+76=>

:)((9*)9'>+9&&

Eric Rivals (LIRMM) Prediction capacity and sequence errors www.lirmm.fr/~rivals 16 / 30

www.lirmm.fr/~rivals


Methods Data

Data sets

a) SAGE-Sanger: collection of public LongSAGE libraries [SAGE-Genie]

' 9 million occurrences 1 992 500 tags at 21 bp

b) CAGE-Sanger: 5’ transcriptomic tags from Fantom3 [Kawaji et al., 06]

5 476 289 occ. for 1 627 871 tags at 21 bp

c) SAGE-Solexa private library from the Skuld-Tech® company

2 222 343 occurrences for 440 445 tags at 21 bp

d) ChIP-seq-Solexa from NCBI GEO sample GSM325935 [Barrett et al., 08]

1 339 671 occ. for 929 165 tags at 30 bp
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Results

Results
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Results

Background distribution and prediction capacity for
ChIP-seq
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Results

Background distribution and prediction capacity
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Results Sequence errors

Comparative analysis of sequence errors in occurrences

SAGE-Sanger SAGE-Solexa ChIP-seq-Solexa
(6 527 650 occ) (2 222 344 occ) (1 339 671 occ)

t S(t) ± α(t) p S(t) ± α(t) p S(t) ± α(t) p

14 6.02 ± 1.64 0.44 4.22 ± 2.77 0.31 − −
15 6.25 ± 0.88 0.43 5.31 ± 1.26 0.36 − −
16 6.10 ± 0.67 0.39 4.85 ± 0.96 0.31 6.89 ± 1.59 0.44
17 7.37 ± 0.46 0.45 5.24 ± 0.71 0.32 − −
18 8.32 ± 0.38 0.48 6.65 ± 0.65 0.38 7.53 ± 0.99 0.46
19 9.52 ± 0.38 0.53 8.11 ± 0.61 0.44 − −
20 10.79 ± 0.33 0.57 9.14 ± 0.61 0.48 8.84 ± 0.09 0.48
21 12.49 ± 0.32 0.63 10.57 ± 0.60 0.53 − −
22 − − − − 10.39 ± 0.09 0.50
24 − − − − 11.99 ± 0.09 0.53
26 − − − − 13.51 ± 0.09 0.56
28 − − − − 15.22 ± 0.09 0.59
30 − − − − 16.83 ± 0.09 0.61
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Results Comparison of assays

Comparison SAGE vs CAGE

a) SAGE-Sanger (1 992 500 tags)
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Results Comparison of assays

Comparison SAGE-Solexa vs ChIP-seq

c) SAGE-Solexa (440 445 tags)
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d) ChIP-seq-Solexa (929 165 tags)
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Results Annotation

Annotation & comparison with tiling array

Classification of Transcriptionally Active Regions (TARs) obtained from
SAGE-Solexa library according to Ensembl annotations into
exonic, inxonic, intronic, and intergenic categories

exonic inxonic intronic intergenic

Result Total
S

(1)
AS
(4)

S
(2)

AS
(5)

S
(3)

AS
(6)

EST
(7)

other
(8)

t = 16 100% 34.7% 7.8% 1.0% 0.4% 15.1% 9.2% 5.5% 26.3%
16 328 5 659 1 279 156 73 2 467 1 501 898 4 295

t = 21 100% 38.5% 8.8% 1.2% 0.3% 15.6% 6.6% 5.5% 23.5%
56 006 21 600 4 947 691 192 8 760 3 694 3 054 13 068

t = 20 100% 38.5% 8.8% 1.2% 0.3% 15.6% 6.6% 5.5% 23.5%
56 441 21 706 4 970 687 192 8 808 3 743 3 100 13 235

Tiling 100% 35.6% − − − 34.9% − 10.8% 18.7%

Tiling data from [Encode project, 07]
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Conclusion

General conclusions

Method to estimate sequence errors

and to optimise prediction capacity in function of tag length.

Solexa sequencing is accurate and adequate for DGE

Probability of an erroneous nucleotide increases with its position
independent of the type of assay: Digital Gene Expression or ChIP-seq

The longer (talking about tag), may not be the better
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Conclusion

Methodological and biological evidence

With tags ≥ 19 bp, probability to map a position by chance < 1%

Above 20bp the number of uniquely mapped tags decreases.

At 20bp with # occ. > 1 the false positive rate 0.6%.
validity of filtration

Possibility to optimise prediction capacity with exact mapping
by choosing a length ' 20

SNPs affect < 4.6% of the tags

9.6% of transcriptomic tags are not mapped due to artefactual or
biological reasons
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Conclusion

Future work

Bioinformatic platform for the analysis of transcriptomics &
epigenomics assays: routine analysis

Database of transcriptomic tags and annotations
for each tag: genomic location and related annotations

Background distribution for a markov model of the genome sequence

Approximate mapping with a few mismatches

Extension for longer reads and other applications:
genotyping, breakpoint mapping [Chen et al., 08],
genome resequencing [Dohm et al., 08], metagenomics
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Conclusion
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Supplementary material
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Supplementary material

Tag annotation is difficult

tag strand

tag location
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