Finding regulatory elements shared by a set of genes

Matthieu Defrance - Hélène Touzet - LIFL

January 2006

Introduction

Method

Examples

Conclusion

Overview

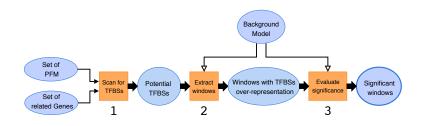
- ▶ Motif over-representation in regulatory regions
- ► A fast algorithm to extract significant local over-representation
- ▶ Example of Rel/NF- κ B target genes and Muscle specific genes

Biological questions

- Understanding gene transcriptional regulation in higher eukaryotes
- Detecting Transcription Factors involved in regulatory mechanisms

Over-represented motifs & regulation

Hypothesis: over-represented motifs are involved in regulation.


- Working with a set of genes that (are assumed to) share regulatory mechanisms
 - Functionally related genes
 - Clusters of genes derived from DNA array analysis
- A motif can be:
 - ▶ Aligo-nucleotide
 - Motif whose profile is known: Position Frequency Matrix, HMM, regular expression
- ▶ Need a background model to evaluate over-representation
 - Markov model
 - ► Empiric model

Finding motifs over-representation

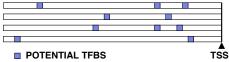
- Regulatory motifs are highly degenerated in higher eukaryotes
- ▶ In order to provide accurate predictions we choose to:
 - Restrict motif search to known profiles
 - Use motif conservation across multiple species

Finding motifs over-representation: TFM-Explorer

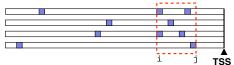
- 1. Scan for all potential TFBSs (exhaustively)
- 2. Extract regions where predicted TFBSs are over-represented
- Evaluate significance of extracted windows (P-value, E-value)

1. Scan for potential TFBSs

Input:

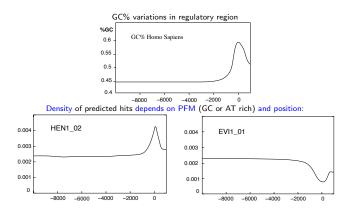

- Set of regulatory sequences
- Set of PFM (for example all TRANSFAC matrices)

Output:


- ► Exhaustive list of potential Transcription Factor Binding Site
 - Overlapping sites (for a TF) are cut
 - Forward and reverse strands are scanned
 - ▶ Use an uniform cutting threshold based on P-value

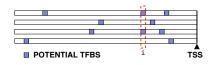
2. Extract windows

- Sequences are aligned on Transcription Start Site
- All TFBSs found in the previous stage are used



Search for common regulatory elements in promoter regions of these genes?

Detect regions where predicted binding sites are locally over-represented


2. Extract windows (2) - Background Model?

We need to determine a local distribution of predicted TFBSs for each matrix

2. Extract windows (3) - Scoring function

Scan on the fly with a scoring function

$$s_i = k_i \ln \frac{\lambda_i}{\lambda_i^b} + |E|(\lambda_i^b - \lambda_i)$$

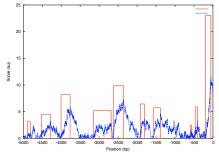
- E sequences set
- \triangleright k_i number of hits at position i
- $\triangleright \lambda_i^b$ Poisson parameter in the background model at position i
- $\triangleright \lambda_i$ Poisson parameter in the expected model at position i

2. Extract windows (3) - Scoring function

Extension to heterogeneous sequences (multiple organisms)

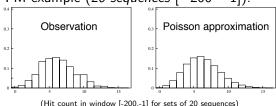
$$s_i = \left(\frac{\sum_{j=1}^{|E|} \lambda_{i,j}}{\sum_{j=1}^{|E|} \lambda_{i,j}^b}\right)^{k_i} e^{|E|\left(\sum_{j=1}^{|E|} \lambda_{i,j}^b - \sum_{j=1}^{|E|} \lambda_{i,j}\right)}$$

- E sequences set
- \triangleright k_i number of hits at position i
- $\lambda_{i,j}^b$ Poisson parameter in the background model at position i for sequence j
- $ightharpoonup \lambda_{i,j}$ Poisson parameter in the expected model at position i for sequence j



2. Extract windows (4) - Cumulative Score

ightharpoonup Global score S_i is cumulative and bounded by zero


$$S_i = max \begin{cases} S_{i-1} + s(i) \\ 0 \end{cases}$$

 Extract regions with positive score without a priori knowledge on their size

3. Evaluate significance of window

- ▶ P-value: Probability $P(k, \alpha, \beta, N)$ to observe $X \ge k$ hits in window $[\alpha, \beta]$ for |E| sequences
- ► Approximate hit count distribution in a window by a **Poisson** distribution
- ► IK3_01 PFM example (20 sequences [-200 1]):

3. Evaluate significance of window (2)

Heterogeneous sequences set case

$$P(X \ge k) = 1 - \sum_{z=0}^{k-1} \frac{(|w| \sum_{j=1}^{|E|} \lambda_s)^z}{z!} e^{-|w| \sum_{j=1}^{|E|} \lambda_j}$$

- ▶ *E* sequences set
- w window
- k number of hits in $w([\alpha, \beta])$
- $\triangleright \lambda_j$ Poisson parameter of his count distribution in w for the sequence j

3. Evaluate significance of window (3) - Limitations

Is this (Poisson approximation) correct for all matrices?

Fitting Observation/Poisson with χ^2 test				
α (error type I)	[100%, 5%]]5%, 0.5%]]0.5%, 0.0]	
% PFM	70%	10%	20%	

Application example NF- κ B target genes set

[Karo Gosselin, Corinne Abbadie IBL]

- ▶ NF- κ B control expression of genes involved in
 - Inflammation and immunity
 - Stress responses, including apoptosis
- Gene set compiled from literature data
- Gene considered as true NF- κ B target when
 - A NF- κ B was map
 - The functionality of motif was experimentally validated

NF- κ B target genes set (2)

- Set of 102 human genes
 - ightharpoonup Promoter sequences retrieved from University California Santa Cruz Genome Browser (region [-10000+1000])
 - List of NF- κ B motif with exact position, exact sequence (for validation)
- Empiric Background model
- All TRANSFAC matrices

NF- κ B target genes set (3) - Results of TFM-Explorer

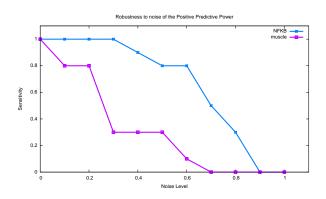
Factor	Matrix ID	Location	Hits	Sequences	P-Value	
TATA	V\$TATA_01	[-0074:-0009]	042	042 (41.18%)	3.57e-14	1
NF-kappaB	V\$NFKB_C	[-0507:-0016]	206	087 (85.29%)	4.89e-14	e-valu
NF-kappaB	V\$NFKAPPAB65_01	[-0520:-0013]	192	084 (82.35%)	1.93e-13	1.0
NF-kappaB	V\$NFKAPPAB_01	[-0227:-0017]	112	075 (73.53%)	2.71e-13	
NF-kappaB	V\$NFKB_Q6	[-0230:-0020]	096	069 (67.65%)	3.12e-11	
c-Rel	V\$CREL_01	[-0511:-0017]	175	076 (74.51%)	5.37e-11	
RREB-1	V\$RREB1_01	[-4382:-3850]	246	089 (87.25%)	1.13e-10	
TATA	V\$TATA_C	[-0060:+0042]	039	035 (34.31%)	3.61e-10	
NF-AT	V\$NFAT_Q6	[-0251:-0016]	107	066 (64.71%)	4.34e-08	
SRY	V\$SRY_01	[-9915:-9736]	110	059 (57.84%)	1.00e-07	
CdxA	V\$CDXA_02	[-5849:-5523]	099	050 (49.02%)	2.23e-07	

TFM-Scan is able to delineate promoter areas that share relevant over-represented TF binding sites

Muscle data set

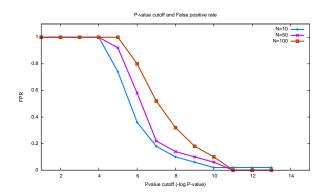
[Wasserman]

- ➤ Set of 27 genes that have skeletal muscle-specific expression (13 human, 17 mouse and 7 rat genes)
 - ► Promoter sequences retrieved from University California Santa Cruz Genome Browser (region [-2000 + 200])
 - ▶ 5 factors that have muscle-specific expression are known: MyF, MEF-2, SRF, TEF (for validation)
- Empiric Background model
- All TRANSFAC matrices

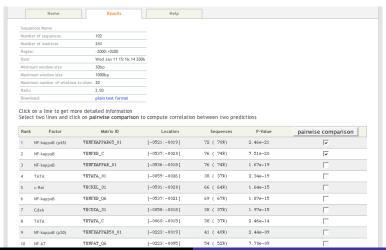


Muscle data set (2) - Results

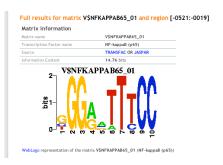
Rank	Transcription Factor (and PSSM)	Score
TFM-	Explorer	
1	SRF* ([-0241:-0027])	6.459e-08
2	MyF* ([-0123:-0024])	9.965e-07
3	MEF2* ([-0073:-0026])	1.003e-05
4	p50 ([-0089:-0058])	3.637e-05
5	Hen-1 ([-0489:-0331])	1.498e-04
OTFE	BS	
1	MYOD_Q6*	3.076e-08
1	AP4_Q5	1.644e-07
3	TAL1BETAE47_01	1.468e-06
4	E47_01	3.599e-06
5	FOXJ2_01	5.798e-06
Touca	ın	
1	TGIF_01	3.002e-05 (2.29)
2	SRF_C*	7.748e-05 (1.878)
3	E47_02	2.194e-04 (1.426)
4	RFX1_02	2.462e-04 (1.386)
5	LMO2COM_01	3.232e-04 (1.258)
oPOS	SUM	
1	MEF2*	1.663e-05
2	SRY*	4.190e-04
3	c-MYB_1	5.022e-04
Δ	S8	9.329e-04
5	SP1*	1.023e-03
6	Hen-1	1.034e-03


Rank	Transcription Factor (and PSSM)	Score
TFM-	Explorer	
1	SRF* ([-0241:-0027])	6.459e-08
2	MyF* ([-0123:-0024])	9.965e-07
3	MEF2* ([-0073:-0026])	1.003e-05
4	p50 ([-0089:-0058])	3.637e-05
5	Ahr-ARNT ([-1342:-1268])	4.505e-05
OTFE	BS	
1	TAL1BETAITF2.01	3.244e-10
2	TAL1BETAE47_01	5.304e-09
	YY1.02	1.506e-08
4	TAL1ALPHAE47.01	7.534e-08
5	AP4_Q5	3.401e-07
6	MYOD_Q6*	7.808e-07
Touca	ın	
1	E47_02	5.414e-02 (-0.969)
9	MEF2.01*	1.128e-01 (-1.288)
3	TAL1ALPHAE47-01	1.586e-01 (-1.436)
4	MEF2_02*	2.080e-01 (-1.554)
5	MEF2_03*	2.080e-01 (-1.554)
6	CEBP_C	2.196e-01 (-1.577)
oPOS	SUM	
1	MEF2*	1.663e-05
2	SRY*	4.190e-04
3	c-MYB_1	5.022e-04
4	S8	9.329e-04
5	SP1*	1.023e-03
6	Hen-1	1.034e-03

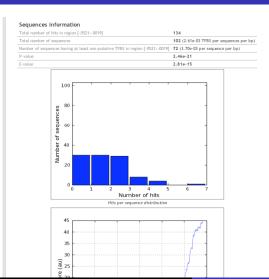
Robustness to noise

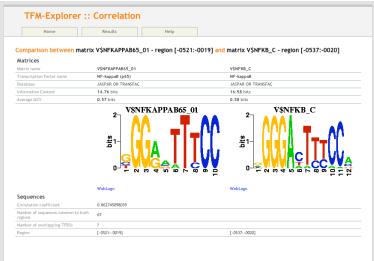

P-value cutoff and False Positive Rate

FPR = FP/Actual-



Web interface


http://bioinfo.lifl.fr


Web interface (2)

Web interface (3)

Web interface (4)

Conclusion

- Extract promoter areas that share relevant over-represented TF binding sites
 - No a priori knowledge of areas size or location is needed
 - Any kind of TF profile can be used
- Use regulatory motifs conservation across species
- Run on the fly